

UNIVERSITÀ DEGLI STUDI DI TORINO

DIPARTIMENTO DI SCIENZE VETERINARIE

Settore di Clinica Medica Veterinaria

INHALED MINERAL PARTICLES IN EQUINE ASTHMA: INNOCENT BYSTANDER OR CONCURRENT CAUSE OF DISEASE?

Alessandra Romolo, Jean-Pierre Lavoie and Michela Bullone

EQUINE ASTHMA

HIGHTLY PREVALENT DISEASE IN THE EQUINE ADULT POPULATION

EQUINE ASTHMA

DIFFERENT PHENOTYPES OF DISEASE

Clinical phenotype

PATHOGENESIS

RATIONALE OF OUR WORK

RATIONALE FOR PERFORMING THE STUDY

HUMANS

Pulmonary diseases caused by organic and inorganic dusts are a significant source of occupational morbidity and mortality

The epidemiological evidence reinforces the need for prompt recognition and control of the respirable agents

Instructors and trainers are exposed to this dust for many hours daily, especially if the horse riding is done in indoor arenas

RATIONALE FOR PERFORMING THE STUDY

SILICA DUSTS

SiO2

PATHOGENICITY

crystalline silica

+++

amorphous silica

SILICA-INDUCED INFLAMMATORY PATTERN

HYPOTHESIS AND OBJECTIVES

HYPOTHESIS

OBJECTIVES

INHALED MINERAL DUSTS ARE INVOLVED IN EQUINE ASTHMA PATHOPHYSIOLOGY TO QUANTIFY AND COMPARE PARTICLES OF CRYSTALLINE SILICON DIOXIDE IN RESPIRATORY SECRETIONS

MATERIALS AND METHODS

corticosteroids/antimicrobial treatments in the 2-week period proceding BALF

MINERAL PARTICLE COUNTS

- COUNTS PERFORMED ON 30 HPF PER SLIDES (40X), OPTICAL MICROSCOPY WITH POLARIZED LIGHT
- ALL THE SLIDE INSPECTED AND MINERAL PARTICLE COUNT EXPRESSED PER HIGH POWER FIELD (INTRA AND EXTRACELLULAR)

SILICA PARTICLES CLASSIFIED BASED ON

COLOUR (milky appearance)

SIZE ≤ 2,5 µm

LOCALIZATION

Silicon dioxide within a macrophage in a horse with MEA (40x).

Vegetable elements, probably hay, in a horse with MEA (40x).

Accumulation of large amounts of iron by lysosomes in a horse with MEA (40x).

Composite inhaled minerals probably characterized by silicon dioxide microparticles in a horse with MEA (40x).

RESULTS

+ 1 +		
	Turin cohort	Montreal cohort
	(N=22)	(N=20)
Controls		
Ν	0	10
Sex (<u>M:F</u>)	-	<u>5 :</u> 5
Age [vrs]	-	10.4 ± 3.6
Mild to moderate equine asthma (MEA)		
Ν	14	5
Sex (<u>M:F</u>)	8:6	<u>3:</u> 2
Age [<u>yrs</u>]	7.4 ± 5.7	8.2 ± 1.6
Severe equine asthma (SEA)		
N	8	5
Sex (<u>M:F</u>)	<u>6 :</u> 2	<u>3:</u> 2
Age [<u>vrs</u>]	15.6 ± 5.4	16.0 ± 4.5

$\begin{array}{l} \textbf{BREED} \rightarrow \textbf{HANNOVER}, \textbf{ QUARTER HORSE,} \\ \textbf{STANDARDBRED} \end{array}$

BAL \rightarrow NOVEMBER – FEBRUARY - MARCH

10-

0

Controls

SÉA

RESULTS

RESULTS

10/42 CASES OBSERVED

SILICA PARTICLES → SEA > MEA > CONTROLS p= 0.05 (Kruskal Wallis Test)

SEA	MEA	controls
case 1: 20%	case 4: 0%	case 8: 4%
case 2: 22%	case 5: 7%	case 9: 9%
case 3: 33%	case 6: 11%	case 10: 12%
	case 7: 14%	

LIMITS

It's a Pilot Study!

HIGH NUMBER OF VARIABLES AND BIASES

WE CANNOT DETERMINATE WITH CERTAINTY whether the number of silica particles reaching the alveoli is the cause of the onset or progression of asthma or leads exacerbation of clinical signs

THE TECHNIQUE USED TO INVESTIGATE SILICA PARTICLES

ACKNOWLEDGEMENTS

Department of Veterinary Sciences, University of Turin GIULIA IAMONE BARBARA MINISCALCO

Department of Veterinary Sciences, University of Montréal FLORENCE DUPUIS-DOWN SOPHIE MAINGUY SEERS BERTA MOZO VIVES

Department of Geological Sciences, University of Turin DONATA BELLIS ELENA BELLUSO SILVANA CAPELLA

GRAZIE PER L'ATTENZIONE!